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INVERSE BOUNDARY-VALUE PROBLEM OF HEAT CONDUCTION FOR A 

TWO-DIMENSIONAL DOMAIN 

N. M. Lazuchenkov and A. A. Shmukin UDC 536.24 

An approximate solution of a two-dimensional inverse problem is constructed on 
the basis of a solution of the Cauchy problem obtained in the form of a series 
in the derivatives and the Tikhonov regularization method. 

The thermal state of power equipment is determined to a considerable extent by the 
heat-transfer characteristics on the surface of the structure elements. These conditions 
can often be found only from the solution of the inverse boundary-value problems of heat con- 
duction. Such one-dimensional problems have been studied sufficiently completely []]. How- 
ever, the one-dimensional model cannot yield confident results for nonuniform heat delivery 
and thickness of the structure element. 

Let us examine the problem of determining the temperature and heat fluxes from a heat- 
delivering boundary y = W(x), (0 < W(x) < d) of the two-dimensional domain D = {(x, y):x fi [0, 
d], y lE[0, W(x)]} by means of known temperature measures and the law of heat transfer to the 
opposite side, which is given by the line y = 0. We consider the thermophysical parameters 
constant. 

Let the curve y = W(x) have a continuous external normal n(x) and at points defined by 
the mesh ~x = {Xo < x~ < ... < x k} on the boundary y = 0 let the temperature t(x~ y, T) be 
known at the times ~T = {To < T] < ... < Tp), i.e., 

t (x~, O, ~j)  = [u -  ( ] ) 
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The law of heat transfer from the environment at the surface y = 0 has the form 

at (x, o, .~) _ ~ (x, ~; .t (x, O, ~)). 
Oy 

Then by knowing (I) we can write 

__  ~ Ot (x~, O, zi) = q i j  ~ ~ (xi ,  ~i; f i i )  �9 ( 2 )  
Oy 

It is required to determine the change in temperature t W and heat flux qw on the surface y = 
W:(x). 

A Cauchy problem in ~he space variable 

Ot O~t O a t (  ctz x x @ )  
o e o  0x + @ '  ' ,pc -$' 

.. Q 

t (~, o, Fo) = A(E Fo), (4) 

or(7, ~, Fo) = q G, Fo): ,(5) 
a o~ 

corresponds to the formulated problem in the theory of heat co~g~uctivity. ~ere t, f, q are 
analytic, real functions. The existence and uniqueness of the solution of problem (3)-(5) 
in a certain neighborhood of the line y = 0 is given by the Kovalevskaya theorem. The solu- 
tion is obtained easily in the form .of a Maclauren series in the variable ~ [2]" 

where 

t =  :~R"f---f- . ( 2 n +  1)! q' 
n ~ 0  r t~0 " 

(6) 

 n(o 
0 Fo 0 ~  

If the positive numbers r~ and r~ define the domain D~ = {(x, Fo)']x I < r~, [Fo I < r2} 
of the analytic functions f and q, then problem (3)-(5) has a unique analytic solution (6) 
in the domain 

(~ y, No) : (~ No) ED~, lyl < q �9 
r~ + r ~  (7) 

1 ! 

Since  f u n c t i o n  t i s  a n a l y t i c  i n  domain ( 7 ) ,  t h e n  the  s e r i e s  t x and t y  converge  i n  t he  same 
I ! domain. However, the rates of convergence of the series t, tx, ty are distinct and degrade 

in the order listed. 

Let the functions f and q belong to the class G of entire functions of exponential type 
of order I (entire trigonometric, exponential, hyperbolic, power functions, their combina- 
tions, polynomials, etc.). Then there are constants l, m such that 

O"+kf I<  lnmU[f], l O~+kq I <  ln mklql (n, k=O,  1 . . . .  ) (8) 
O}"0Fo ~. 0~"OFo ~ , 

everywhere in the domain of definition of f and q. The series under consideration converge 
in this case for all y, as follows from (7) for rl, r2 + ~. The subscript N will denote the 
N-th partial sum of the corresponding series. By using (8) it is easy to obtain an error 
estimate for the reduction of the series being studied: 

[tN -- tl ~2N+2 
E = ]t---~ "" (2N + 2)! (m q-- 12) N+I, 

E~ [ t'~N - -  txl ~2N+2 _ ~, I (m + tDN+ 1, 
Ig l  (2N + 2)! 

(9) 

It; -'4t W 
ey -- I t~l (2N)---T (m + 12) N, 

L e t  us use  the  s o l u t i o n  found f o r  the  Cauchy p rob lem ( 3 ) - ( 5 )  to  o b t a i n  app rox ima te  

224 



solutions of the inverse problem of heat conduction being considered by formulating condi- 
tions (I) and (2) of the inverse problem in conformity with conditions (4) and (5) of the 
Cauchy problem. Because of the inertia of the heat-transport process at points of the body 
remote from the heat delivering surface, the temperatures and heat fluxes are represented by 
smooth functions. In the case under consideration, points of the line y = 0 are again most 
remote from the surface y = W/d. Hence, the constraints (f, q ~ G) imposed on the tempera- 
ture f and heat flux q functions can be considered acceptable, and estimates (9) are valid. 

Then the solution of Cauchy problem (3)-(5) permits an approximate determination of the 
change tW and qw on the opposite boundary y = W/d by means of the known f and q on the line 
y = 0: 

t~ = tu 1;= + w # ) '  

q~ d [&N cos (n, x) + ty~ cos (n, g)]~= ~_~(~. ( ] O) 

The order of the relative error in the values of the functions tW and qw given by (10) 
agrees withE and Ey for y = W/d, respectively. 

As we see, to obtain the solution of the inverse problem it is required to differentiate 
functions known only from conditions (1) and (2) and with certain errors besides. It is well 
known that the numerical differentiation operator is unstable. To obtain the solution of the 
inverse boundary-value problem under investigation that is stable to perturbations in the 
functions f and q, it is necessary to use stable differentiation operators. Such operators 
can be constructed by different methods. Let us use the Tikhonov regularization method [3]. 
It is easy to see that the derivative Z = 3i+Jf/3x:3T3 will be a solution of the integral 
equation 

AZ = u, (1:) 

where 

AZ= 

T 
(: -- ~)~-: 

0----~.' z(x, n)dn, i - o ,  j~o;  
'T o 

X 

(x--~)~-~ z (L  T)d~, i:#O, y=O; (i- 1)! 
Xo 

x T 

!' ; (x(i--__~)z-11)t (~(]--~1)i-'I)! Z (~, tl)d~ld~, i =/= O, ] --# O; 
]--1 

n! ~ , i - o ,  j ~ o ;  
r~=O 

i - - 1  

f - -  r!  Ox" =~o' 
r ~ O  

i i - I  (x--xoF OV ~=~o-- j - '  (~--~o) ~ 
U =  [--Z r, Ox ~ Z n, 

r~O n ~ O  

X /~ ~-~ ~'-i ( x - -  XoY (~--'~0)" 
OT'n =To r=O n=O 

• 

~  ,~=-,o, i 4= o, ] 4= o. X OxrOTn X=Xo 

Therefore, the problem of differentiating a function of two variables f reduces to solv- 
ing a Volterra-type integral equation (II) of the first kind. In conformity with the Tikho- 
nov regularization method, 
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Z ~ : M ~ [Zl = IIAZ - -  U[I~, + ~ II Z I15~ --" mi~ 
z (12) 

will be the stable algorithm of the solution of this incorrectly posed problem, where the re- 
gularization parameter a>0 is selected inaonformitywiththeerror ~ of giving the right 
sides of Eqs. (Ii). 

The necessary condition for the minimum of the functional M a results in the integro- 
differential equation 

BZ @~ ( Z----Ox z 02Z OzZ ) z (13) 

where 

3 bu 

(-1)~ S Kj(~, ~, b~)z(., ,,)d~, i =  O; 
n = 2  ~o 

2 aT~ 4 

BZ = ~ (--1F+1 S /q( . ,  , ,  a~)Z(,, ~)d,, J = o; 
n = l  X o 

4 an bn 
(--1) n+l 5 -5  Ki(x, *, an)Kj(T, • bn)Z(*, •215 

12= ] Xo To 

m--I 
_ 1 ~ c,~_~ ( v - -  13) ~ - ~ - ~  ( ~ -  r)m+~ " 

K,~(f~, v,  6) ( m - -  1)---~ ,=o m + r ' 

"~p 

S ( 3 ] - - T ) ] - - I U ( x ,  'l'])dI], i = O; 
T 

Xh 
I C = / ~" ( ~ -  x)~-' U(~, ~)d~, j = O ;  

x k "Cp 

,[ j" (~-,) '- '  ( n -  ~)J-' v (~, n) dne~; 
I x  z 

an, b n are components of the vectors (Xk, x, x, Xk), @p, Tp, r, T), respectively. 

Derivatives of the function f are recovered in the rectangular domain DI = {(x, T):x E 
[Xo, Xk] , T E [To, Tp]}. Equation (13) is defined in DI. We consider the derivatives of Z to be 
given on the boundary of the domain DI: 

Z],~=-c o = Z-co(X), Zl,~=-qo = Z,p (X), (14) 

Zl.=.o = Zxo (~), Z l . - . ~  - -  z .  h ('0. 
The derivatives are determined sequentially in order of increasing growth. This permits 

determination of more or less confident boundary conditions (14) for each specific case of 
recovering the derivative. Values of Z on the boundary of the domain DI are evaluated by 
finite differences by means of values found for the preceding derivatives. 

The variational problem (12) therefore reduces to solving (13) in combination with the 
boundary conditions (14). This latter is accomplished by reduction to a system of (k -- i) �9 
(p -- I) linear algSbraic equations in the mesh co = COx x ~T. The system of equations ob- 
tained here for small values of the parameter ~ is poorly specified. Hence, it is prefer- 
able to solve it by one of the iteration methods. The regularization parameter u was selected 
by the residual principle [4]. 

Therefore, by realizing the variational problem (12) on recovery of the derivatives of 
the function f sequentially (starting with the lowest derivatives), and using the values of 
the lowest derivatives already obtained for the computation of the right sides of (II) and 
the boundary conditions (14), we have obtained a stable algorithm for differentiation of an 
experimental function of two variables. 

To assure the required accuracy in the differentiation, it is necessary to use a com- 
pact mesh ~. However, the order of the system of linear algebraic equations will hence be 
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Fig. l ,  Results of solving a model inverse problem 
in the section x = 0.5: ]) temperature tW; 2) heat 
flux qw; 3) exact values of the quantities; 4) re- 
sults for a one-dimensional model of the inverse 
problem; results of solution of the two-dimensional 
problem are displayed by dots (6 = 0.05). 

Fig. 2. Results of the solution of the model inverse 
problem for Fo = 0.5. Notation the same as in Fig. ]. 

large. The specificity of the system is degraded noticeably with the increase in order. The 
order of the system to be solved can be lowered considerably by considering the differentia- 
tion problem not in the whole domain DI but in a certain finite covering {D~]} (i = I ..... 
I; j = |, ..., J). This latter is selected from the following conditions: l) the union of 
all D~] agrees exactly with Di; 2) the neighboring domains D~ ] have three common layers of 
nodes of the mesh ~ at their contact; 3) the order of the system of algebraic equations in 
each domain D? does not exceed a certain optimal value M. The second condition permits 
elimination of the error in giving the boundary conditions (14) for the boundary points of 
the domains D~J that are internal points of the domain D~. Realization of the variational.. 
problem (12) is performed sequentially for each domain D?. For each succeeding domain D~ ] 
from the domains where the computations have already been performed, the values obtained for 
the function Z are taken as boundary conditions. The optimal order of the system of alge- 
braic equations is selected with the characteristics of the electronic computer to be used 
taken into account (operational memory, fast-response). Thus the optimal order for the 
BESM-4M is M ~ 40. In the approach being proposed, the variational problem (12) should be 
solved I x J times for each derivative to be recovered. However, the possibility hence 
appears of considering a sufficiently large array of experimental information, and the speci- 
ficity of the systems being considered is also improved substantially. 

_Therefore, the stable algorithm described for numerical differentiation of the function 
of two variables in combination with (10) determines an approximate solution, stable to 
perturbations in the initial function f, for the two-dimensional inverse boundary value prob- 
lem of heat conduction, whose confidence is determined by the estimates (9). Values of the 
constants ~ and m required for this are found from (8) by means of the recovered derivatives 
of the functions f and q. Since information about the functions f and q is constrained only 
by the conditions (1) and (2), then the recovery of higher order derivatives of these func- 
tions is difficult becaus'e of the cumulative error in the right sides of (I]). Hence, it is 
expedient to take N = 2 to reduce the series in the solution of the Cauchy problem (6). 

The above constrains the applicability of the proposed solution of the inverse problem 
for rapidly proceeding thermal processes. Thus, the error in the results of this approach 
reached 50% and more in the initial period under thermal impact. However, as methodological 
computations showed, the algorithm described is quite effective for a moderate change in the 
temperature. 

The algorithm for the solution of the two-dimensional inverse problem of heat conduc- 
tion under consideration is realized in ALGOL. Results of the solution for the domain DI = 
{O~x~, 0~y~0,_2} of the following model problem are shown in Figs. ] and 2. The surfaces 
y = 0, x = 0 and x = I are heat insulated and the heat flu~ qw is delivered to the surface 
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y = 0.2 and assures the following temperature change on the surface y = 0: 

t]3= 0 = f (~  Fo) = l l - -  0,5 cos (2a~ l  sin (a Fo). 

The exact solution of the direct problem under consideration is obtained easily from the so- 
lut&on of the Cauchy problem (7) for the mentioned kind of function f and q = 0. The temper- 
ature change 

t (xi ,  0, Foj) = /~ j - - - - ( l  + 8811xi+i) •  Foj), (i, j = 0 . . . . .  10), 

i s  g i v e n  on t h e  h e a t  i n s u l a t e d  s u r f a c e  y = 0 f o r  t h e  mode l  i n v e r s e  p r o b l e m ,  w h e r e  ~ i  = F o i  = 
0.I x i; {G1~xi+j} is a sequence of random numbers distributed uniformly in the interval 
[--I, ~], and 6 is the maximum relative error with which the temperature is known on the sur- 
face y = 0. 

As we see from the graphs, utilization of a one-dimensional inverse problem model does 
not permit recovery of the heat flux in this example. The errors in solving the two--dimen- 
sional inverse problem for different realizations of the random numbers e did not exceed 5% 
for the temperature and 10% for the heat flux for ~ = 0.05. Methodological computations 
performed displayed the stability of the algorithm described for the solution of the two- 
dimensional inverse boundary-value problem of heat conduction quite well for perturbations 
of the initial data (I) and (2). 

NOTATION 

d, chara!teristic dimension of the plane domain under in_ve~tigation; n, outer normal to 
the boundary y = (I/d)W(~); T, ~ime i Fo, Fourier criterion; x, y, dimensionless coordinate~; 
t, dimensionless temperature" tx, t., derivatives of the function t with respect to ~ and y, 

' ~ ~ . 

respectively; ~, heat-conduction coefflclent; a, thermal diffusivity; C~_I, binomial coeffi- 
cients�9 

I �9 

2. 

�9 

4. 
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